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A new analytic solution is presented for predicting evaporation rates from plane liquid 
surfaces into a neutral turbulent boundary layer. Conditions of passive dispersion are 
assumed. Molecular diffusivity is incorporated into the boundary conditions. Both 
smooth and rough surfaces are considered. A comparison with a wide variety of 
experimental data is made; this tends to reveal inadequacies and inconsistencies in 
the data, rather than test the theory. The effects of a roughness change at the 
boundary of the liquid surface and of high vapour pressures can be included for 
practical purposes by simple formulae. A criterion is derived for the validity of the 
neglect of buoyancy effects. 

1. Introduction 
A body of liquid with a free surface exposed to the atmosphere tends to vanish 

through evaporation as vapour diffuses from its surface and is carried away by the 
turbulent flow of the wind. This process has long been of interest to meteorologists 
and hydrologists in connection with water in lakes and reservoirs. Recently it has 
also become of importance in assessing the risks to society from industrial sites 
handling large quantities of hazardous flammable or toxic materials. Accidents can 
result in the formation of pools of liquefied gases or volatile liquids, and the evolution 
of vapour from these can create gas clouds capable of endangering the public (Health 
and Safety Executive 1978, 1981 ; COVO Steering Committee 1982). 

Current methods of evaluating evaporation rates from a pool fall into two classes. 
The first class use simple formulae for mean evaporation rates with power-law 
dependences on wind speed and pool size. These are ultimately derived from the work 
of Sutton (1934), and do not incorporate knowledge of turbulent diffusion gained in 
the last half-century. Often they do not involve the relevant parameters in a 
dimensionally correct manner. Also they disagree as to the dependence of turbulent 
mass transfer on the molecular diffusivity of the vapour, which must be important 
in the viscous sublayer a t  the surface. 

Secondly, there are methods involving numerical solution of equations for turbulent 
mass transfer using various closure assumptions. While potentially the most flexible, 
these methods are also the most expensive to apply, and their complexity may be 
unwarranted for practical purposes in view of the continuing debate over those 
closure assumptions. 

The aim in this paper is to present an analytic solution based, like Sutton’s (1934) 
theory, on representing the turbulent diffusion by an eddy diffusivity varying with 
height and replacing the logarithmic wind profile by a power law. However we follow 
Hunt & Weber’s (1979) analysis of diffusion from a point source in using a power-law 
exponent dependent on the height to which the vapour diffuses. Unlike previous 
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analytic studies, our treatment incorporates the effects of molecular diffusion near 
the surface by using near-wall logarithmic laws based on thorough reviews of 
experimental data in equilibrium layers by Kader (1981) for smooth-wall flows and 
by Brutsaert (1982, chap. 4) for rough-wall flows (appropriate to  pools with waves). 
This results in a modified form of boundary condition for the diffusion problem, and 
consequently the solution does not have the simple power-law dependences on wind 
speed, pool size and molecular diffusivity found in the earlier studies. Nevertheless, 
a closed-form solution is obtained. 

We attempt to  compare our theoretical results with the published experimental 
data, but find that inconsistencies and inadequacies of these data do not allow a 
stringent test, though the general agreement is satisfactory. 

The theory described above is based on a fundamental assumption that the vapour 
behaves as a passive contaminant in the atmosphere. This assumption is invalid if 
the vapour pressure is a significant fraction of atmospheric pressure, since the vertical 
velocity at the liquid surface then becomes large enough to  alter the boundary-layer 
structure. It is shown that the theory can be extended to cover this case satisfactorily 
in a simple manner. The assumption of passive behaviour is also invalid if gravitational 
effects (i.e. natural convection) become important - criteria for the validity of the 
theory are derived, but we do not attempt to extend i t  to  this complex situation. 

2. Formulation of the problem 
2.1. Basic definitions 

Consider the evaporation from a pool of slightly volatile liquid whose surface occupies 
the region 0 < x < d on the horizontal plane z = 0. A neutrally stable turbulent 
airstream flows over this pool in the x-direction with friction velocity u* and 
roughness length zo, which are assumed to be uniform along the whole x-axis. The 
aim is to  calculate the local evaporation rate J ( x )  (in units of mass areap1 time-') as 
a function of x dependent on the parameters u* and zo : the pool temperature, which 
determines the saturated vapour pressure of the liquid, is assumed to be maintained 
constant in time and space. 

It is supposed that the density of air saturated with the vapour is not altered so 
much as to change the mean-velocity profile or the turbulent structure of the 
airstream; the evaporation rate must also be small enough to preserve the boundary- 
layer structure. These conditions imply that the vapour is dispersed as a passive 
contaminant, so that the analytical methods of turbulent-diffusion theory may be 
used without the intractable complication of including the dynamics of a stratified 
turbulent flow. The vapour concentration in the air is determined by the condition 
that at the liquid surface i t  takes the value for saturated vapour, given, assuming 
that the perfect-gas law holds, by 

(in units of mass/volumc). (2.1) 
M V P V  c, = - RT 

Here M ,  is the molecular weight of the vapour, P, is the saturated vapour pressure 
at the temperature T of the liquid surface, and R is the gas constant. 

On dimensional grounds we expect that the local evaporation rate should be given 

(2.2) 

by 
x d  
20 20 

J ( x ,  d ,  zo, u*, c,, v ,  D )  = c, u* j  (- , - , Re,, Sc) , 
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where v is the kinematic viscosity of the air and D is the molecular diffusivity of the 
vapour in air. The roughness Reynolds number is given by 

Re,, = u* z,,/v. (2.3) 

Note that we extend this description to smooth-wall flows, when zo is defined by a 
constant value of Re, = 0.13 (Monin & Yaglom 1971, $5.3). Sc is the laminar Schmidt 
number given by 

In (2.2) we have suppressed reference to parameters describing the geometrical 
characteristics of the roughness elements, but at present there is little ksowledge of 
the dependence on these (Brutsaert 1982, 54.4). 

SC = v / D .  (2.4) 

2.2. The diffusion-advection equation 
To describe the vapour concentration field we use a dimensionless variable ~ ( z ,  z )  
defined as the ratio of the mass concentration of the vapour to the saturated-vapour 
value (2.1). Thus x takes the value 1 at the liquid surface and tends to zero at large 
distances, assuming no background concentration of vapour. x is an ensemble-mean 
quantity, and it is assumed that conditions have reached a statistically steady state 
so that x is independent of time. Only the mean quantity x is considered in this paper. 

We use a boundarg-lager version of the diffusion-advection equation with variable 
1 1  

eddy diffusivity : 

U ( 2 ) - = -  K(z)- . ax ax a2 a (  2) 
The velocity profile for a neutral turbulent boundary layer (above the viscous 
sublayer) is 

where K is von Kdrmdn’s constant. The eddy diffusivity K is assumed proportional 
to the eddy viscosity K, with 

the turbulent Schmidt number. The eddy viscosity corresponding to the profile (2.6) 
with Reynolds stress independent of z is 

CT = K / K ,  (2.7) 

K = K U * Z .  (2.8) 

Although the use of a diffusion equation is well known to be dubious in many cases 
of turbulent dispersion, the work of Chatwin (1968) and Hunt & Weber (1979) shows 
that for dispersion from the surface in a logarithmic boundary layer it gives a good 
approximation to the results of Lagrangian similarity theory (Batchelor 1964), which 
does not involve any concept of eddy diffusivity. This success may be due to the fact 
that, since the eddy diffusivity is proportional to distance from the wall, it is also 
proportional to the local depth of the vapour layer ; this automatically incorporates 
the idea that, as a plume grows in size, larger eddies become most important in 
dispersing it. In  homogeneous turbulence, on the other hand, this means that a 
uniform eddy diffusivity cannot describe the dispersion of a puff of contaminant 
(Batchelor 1952). 

The neglect of the terms for diffusion in the x-direction in (2.5) is justified if the 
vertical scale of the problem is much smaller than the horizontal scale: the validity 
of this will be discussed below. The equation is also valid for evaporation from a pool 
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of finite width provided the width is much greater than the depth of the vapour layer. 
Vertical diffusion then proceeds independently along each line traversing the pool in 
the x-direction. Since (2.5) is parabolic, solutions are not influenced by the position 
of the downstream edge. Thus in this model there should be no dependence of the 
local dimensionless evaporation rate j of (2.2) on the parameter d/zo. 

2.3. Previous solutions for evaporation 

Equation (2.5) was originally used to  describe evaporation by Sutton (1934). He used 
the power-law wind profile 

in which the index n was regarded as dependent solely on the atmospheric stability 
and the ground roughness. Also he assumed that the eddy viscosity K ( z )  cc z ' - ~  so 
that the shear stressp, KaU/az was constant with height (p, being the air density). 
The turbulent Schmidt number (2.7) was taken as a constant. At the liquid surface 
Sutton applied the boundary condition ~ ( x ,  0) = 0 for x < 0 and 1 for x 2 0. Under 
these circumstances (2.5) can be solved analytically, yielding a similarity solution in 
which the evaporation rate 

U(Z) = U,(Z/ZJnl (2.9) 

ax 
L+O az 

J(x) = - lim c, K'- (2.10) 

is proportional to xPm, with m = n/( l+2n) .  Sutton recommended the value n = f, 
giving m = i, to  fit windspeed measurements in neutral conditions. 
1 dsquill(l943) modified Sutton's approach by introducing a dependence of K on 

Sc. This was based on arguments due to Sutton involving an empirical expression 
for the turbulent autocorrelation function for the vertical component of fluctuating 
velocity. This derivation bears little relation to  current concepts of the role of 
molecular viscosity and diffusivity in turbulent transport, but led Pasquill to the 
conclusion that J is proportional to Sc-2, for which he found some experimental 
support. 

To estimate evaporation ratea from pools of liquid in hazard analysis, several 
subsequent authors (Opschoor 1978; Shaw & Briscoe 1978; Lees 1980, $15.2.2; 
Cremer and Warner Ltd in  COVO Steering Committee 1982, Part 2, $7.0) have 
applied Sutton's results in the form 

J = kc, Ui d-i SC-', (2.11) 

where J is the mean evaporation rate per unit area of a square or circular pool of 
area dZ.  If any reference height is stated, U ,  is taken as the wind velocity at 10 m. 
The exponent T is assigned values ranging from 0 to $. Values of k are derived from 
various sources of experimental information. 

Equation (2.11) is unsatisfactory because it does not conform to the basic 
dimensionless form (2.2) involving the parameters u* and zo defining the boundary- 
layer structure. The diversity of opinion about the dependence on Sc is also 
unsatisfactory. This may not matter for practical purposes if these correlations are 
applied to situations close to the original experimental conditions, but in hazard 
analysis i t  is frequently necessary to  extrapolate to much larger pool sizes. Such 
extrapolation needs to  be based on physically justified scaling principles. 

Calder (1949) improved Sutton's approach by recognizing that the power-law index 
n should be chosen.so as to match the fundamental logarithmic profile (2.6) for values 
of z characteristic of the local plume depth, rather than applying a fixed value for 
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given atmospheric conditions as in all the work mentioned above. This approach was 
revived by Hunt & Weber (1979) in describing diffusion from a point or line source. 

To obtain satisfactory agreement with Lagrangian similarity theory, Hunt & 
Weber also used the linear eddy-diffusivity profile (2.8) instead of the zl-fl dependence 
used by previous workers. This feature plays a key role in our solution because i t  
implies that concentration profiles become logarithmic near the surface, whereas in 
Sutton's formulation they remain finite. This allows us to  introduce the effects of 
molecular diffusivity in a small region near the surface by matching our solutions to 
relations for equilibrium logarithmic concentration profiles with dependence on Sc. 

The abovementioned solutions to the evaporation problem have applied the 
condition x = 1 directly to the turbulent-diffusion equation with no allowance for 
molecular effects near the boundary. The Schmidt-number dependence in (2.1 1) 
has been introduced by other arguments of doubtful validity. 

The turbulent-diffusion equation has also been solved. numerically by Reijnhart, 
Piepers & Toneman (1980) with allowance for molecular effects near the wall. This 
is similar to the present treatment, but they did not obtain any analytic solutions. 
Other numerical solutions for evaporation of water including stability and roughness- 
change effects, which can be important for lakes and reservoirs, are reviewed by 
Brutsaert (1982, chap. 7) .  

2.4. Power-law approximation to the logarithmic projile 
The diffusion-advection equation (2.5) cannot be solved analytically with the profiles 
given by (2.6)-(2.8). The power-law profile (2.9) provides a good approximation to 
the logarithmic profile (2.6) if 

over a range of z defined by 

z 
n In - Q 1 or z1 e-'ln = z,, Q z Q z1 elin I Z1l 

(2.12) 

(2.13) 

(Hunt & Weber 1979). To achieve the appropriate approximation in a particular 
problem z1 is chosen to match the typical depth of the vapour layer over the lengthscale 
of interest - in this case the pool length d .  (It does not matter that the power-law 
profile is not valid as z becomes zero because near the wall the advection term becomes 
negligible, as will be seen later.) Hence (2.5)-(2.8) become 

(2.14) 

which can be solved analytically. To provide an estimate for z1 we use the following 
results from the theory of line sources. 

Hunt & Weber showed that the solutions of (2.14) for instantaneous and continuous 
line sources display features matching all the properties deducible from Lagrengian 
similarity theory without invoking the use of an eddy diffusivity (Batchelor 1964). 
Their solutions also agree with properties ,of solutions of (2.5) with the logarithmic 
profile established by Chatwin (1968). This agreement extends to the zeroth- and 
first-order terms in an expansion in powers of n 6 1 ,  as the profile given by (2.9) and 
(2.12) matches (2.6) to that accuracy. 
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(1964) result for the downwind ground level concentration is 
For a continuous line source of uniform strength q per unit length, Batchelor’s 

(2.15) 

where Z(x) is the path of the centroid of an instantaneous puff of contaminant given 
implicitly by 

(2.16) 

The constant c was evaluated by Chatwin (1968) as e-7, where y = 0.5772.. . is Euler’s 
constant. The turbulent Schmidt number cr was taken as 1 by Chatwin and by Hunt 
& Weber, but our requirement of matching with logarithmic concentration profiles 
near the wall means that CT = 0.85 (see below). Fackrell & Robins (1982) found that 
a value for cr of approximately 0.8 was needed to match their careful measurements 
of mean concentrations and vertical fluxes from a ground-level point source. 

Note that, in terms of the small parameter n of (2.12), equations (2.15) and (2.16) 
give 

q 1 + n[ln (cZ/zl) - 11 
~ ( ~ 3  O )  OC 1: 1 + n In (ci/zl) 

(2.17) 

without further approximation. The reference height z1 is still arbitrary, but the 
choice z, = cZ(zl)/e makes Hunt & Weber’s ground-concentration solution (see their 
equation (4.12)) 

(2.18) 

match (2.17) in magnitude and slope at  x = x l .  (Hunt & Weber in fact chose z1 = Z(xl) ,  
but this affects the result only at  O(n2) . )  

For a liquid surface the appropriate value of zo is uncertain because of the possible 
presence of gravity waves: a value of 2 x for ‘smooth sea’ as quoted by Sutton 
(1955) would seem appropriate for accidental liquid spills. If the liquid surface is 
aerodynamically smooth then zo = 0.13v/u, (Monin & Yaglom 1971, 55.3) -for air 
v x 1.5 x m for u* = 0.2 m/s. The horizontal dimensions of 
interest for spills of hazardous liquids probably vary from 1 to 1000 m, so that the 
dimensionless pool length d/zo  may lie between lo3 and lo8, if the maximum possible 
zo for ‘rough’ conditions is taken as m. Figure 1 shows how the plume height 
Z corresponding to these distances varies according to (2.16). The values of 
n-l = In (cZ/ezo) are seen to vary from about 3 to over 12. However, as the larger 
values of d are likely to be associated with the larger values of zo and vice versa, values 
of d/zo  are probably in a smaller range around lo5, giving n close to Sutton’s value + and making the expansion for small n a reasonable approximation. 

2.5: General solution of the diffusion-advection equation 
Equation (2.14) can be solved for general distributions of the mass flux from the 
boundary by use of a Laplace transform in x .  First i t  is convenient to render the 
variables dimensionless by taking 

m2/s, so zo x 

(2.19) 

so that (2.20) 
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The Laplace transform f (p ,  2) is defined by 

and satisfies the ordinary differential equation 

329 

(2.21) 

(2.22) 

(Recall that ~(z, z )  = 0 for z < 0.) The general solution satisfying a condition of zero 
concentration at 00 is 

x" = F(P) Ko(s), (2.23 a) 

where (2.23b) 

and KO is a modified Bessel function (Abramowitz & Stegun 1972, $9.6). As Z+O 
and s + 0 this solution has the behaviour 

2- -F(p)[ln+s++][1+O(s2)] 

N -F(p)[+(n+l) lnZ++lnp-ln( l+n)+y] .  (2.24) 

We define the dimensionless mass fluxj(X) by (cf. (2.2)) 

J K ax 
c, u* z+o 0. 3.2 

j(X) = - = -1im -2-, (2.25) 

and so, using (2.24), = +(n+i)EF(p). (2.26) 
U 

2.6. The boundary condition at the surface 

The surface boundary condition needed to fix the solution of the turbulent-diffusion 
equation is obtained by matching the concentration profile near the surface (2.24) 
to a wall profile that takes account of the presence of a laminar sublayer dominated 
by molecular transport processes. For the case of an aerodynamically smooth surface, 
Kader (1981) recommends the wall profile 

( 2 . 2 7 ~ )  

where xo is the vapour concentration at z = 0 and is 1 at the pool surface. The function 
PI is determined by a combination of dimensional reasoning and empirical correlation 
as 

(2.27b) Pl(Sc) = (3.85 S~i- l .3 )~+- lnSc  

for 6 x < Sc < 4 x lo4. As mentioned above, the values of the von Karman 
constant K and the turbulent SchmidbPrandtl number cr used in this correlation are 
0.40 and 0.85 respectively. 

For rough surfaces a range of empirical and semiempirical relations has been 
reviewed by Brutsaert (1982, $4.4) ; for present purposes we propose to use Brutsaert's 
(1975) expression 

U 

K 

(2.28 a) 
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with p2(Sc) = 7.3 Rek Sc+-5u, (2.28b) 

which has been validated for 0.6 < Sc < 6 and Re,, > 2. 
In terms of the dimensionless variables of the diffusion equation above, (2.27) and 

(2.28) can be expressed as 

(2.29 a) 

U 

K 
where /3(Sc) = P1(Sc)+- ln0.13 (2.29 b) 

for a smooth surface, since then the effective roughness length is zo = 0.13 v/u*,  and 

P(Sc) = B Z ( S C )  ( 2 . 2 9 ~ )  

for a rough surface. 

3. The solution for an evaporating pool 
Matching the wall-region concentration profile ( 2 . 2 9 ~ )  with the near-wall form 

(2.24) of the Laplace transform of the general solution of the turbulent-diffusion 
equation yields a result for the surface mass flux in terms of the known distribution 
of surface concentration x o ( X )  : 

( 3 . 1 ~ )  

where A is a function of the power-law index n and the Schmidt number Sc: 

(3.lb) A = nP1+1+2 ln(l+n)--y+-(l+n)P. 

This matching occurs for values of z with z -4 z1 and z + zo:  hence in view of (2.13) 
it is justified by the condition n -4 1. In practice it appears that this condition need 
not be very strict, presumably because for z 4 z1 the advection term becomes 
negligible in (2.5) and the accuracy of the power-law profile is irrelevant. 

At the liquid surface, xo = 1 :  it is unnecessary to consider explicitly the vapour 
dispersion downwind of the pool end a t  x = d since the governing equation (2.20) is 
parabolic. We do not consider here the form of the solution beyond x = d,  and so the 
pool may be treated as semi-infinite. However, the pool length will be reflected in 
the choice of the power-law index n from (2.12) and figure 1,  so that our solution is 
to be regarded as valid just for distances of order d. In effect, n can be regarded as 
a slowly varying function of z (Hunt & Weber 1979, $4). The Laplace transform of 
the function xo(X)  = 1 for all X 2 0 is simply f o  = p-l; substitution in ( 3 . 1 ~ )  and 
manipulation of the inverse transform as described in Appendix A yields the formula 
for downwind evolution of the mass flux 

K 

U 

where 

K 
j ( X )  = (1  + n) G(e” X), ( 3 . 2 ~ )  

(3.2b) 

We suppose that, to obtain the best overall result for a pool of length d ,  z1 should 
be related to the depth of the vapour layer at some intermediate point x = u2 d with 
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FIGURE 1. Variation of particle displacement 2 and power-law index n with distance from 
source. 2 is defined by 2 = ( C T / K ~ )  Z[ln (c2/zo) - 11. 

0 < a2 < 1. Also, recalling the discussion following (2.17), we take 

z1 = a, cE(a2 d ) / e ,  (3.3) 

the function Z(x) being defined by (2.16) (see figure 1). (a, = 1 is the value needed 
to produce optimum results for the line-source problem.) With these definitions, the 
dimensionless distance (2.19) corresponding to the end of the pool is 

To evaluate the mean dimensionless evaporation rate, or mass-transfer coefficient, 
the quantity of prime practical interest, we now integrate over X, regarding n as a 
constant for a particular pool size. The result is 

where 

(3.5b) 

The evaluation of the functions G(6) and G(6) is described in Appendix B, where i t  
is found that four terms of a formal series expansion give results within $yo of an 
accurate numerical integration. Evaluation o f j  for a, between 1 and 4 and a2 between 
+and 1 produces variations of 4 % at most over the range of parameters studied (shown 
in figure 2). Thus no significant errors result from taking the fixed values a, = 1, 
a2 = 2, which are plausible physically. This is done in the results presented in 34. 
Hence there are effectively no disposable constants in the theory. Note that this 
insensitivity to the point at  which the velocity profiles are matched serves to justify 
carrying out the integration of ( 3 . 5 ~ )  without varying n .  

1 5  m-1 = G(t')diY. 
0 
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FIGURE 2. For description see facing page. 
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With the chosen values of a1 and a2, (3.4) becomes 

2e X, = 7 = 9.681 .... (3.6) 

The basic boundary-layer approximation of neglecting streamwise diffusion in (2.5) 
can now be justified by the fact that 

z1 - K2cn --- x 0.02n. 
d 2 e u  (3.7) 

Thus the power-law profile condition n 4 1 is the main factor limiting the accuracy 
of the solution. 

4. Comparison of results with experimental data 
4.1. Smooth surfaces 

Figure 2 (a) shows the variation of the mean mass-transfer coefficient J as a function 
of the pool-length parameter d/z, for four different values of Sc. Figure 2(b) shows 
these graphs enlarged in the region for which the bulk of published experimental data 
is available. To meet the conditions of an aerodynamically smooth surface both 
upwind and over the pool, only data from wind tunnels are relevant. The experimental 
data must be treated with caution, because in most cases assumptions must be made 
about the values of u* and there remain considerable inconsistencies between 
different sets of data. 

In  his theoretical and experimental study of the evaporation problem, Pasquill 
(1943) compared his results with those of several earlier investigators (Hine 1924; 
Hinchley & Himus 1924 (see also Himus 1929); Millar 1937; Wade 1942). He used 
these experiments as approaching the theoretical case of a liquid surface flush with 
a solid surface with a fully developed turbulent flow. Pasquill found that, while his 
own data matched his version of Sutton’s (1934) theory closely, the earlier 
investigations showed greater evaporation rates, in some cases by a factor of two. 
Pasquill ascribed this excess to the existence of ridges at the upstream end of the 
liquid pools in some of the experiments and to the presence of ripples on the surface. 
He obviated these difficulties himself by using pieces of saturated filter paper in place 
of pans of liquid. Pasquill measured the mean air speed at a height of 10 mm above 
the evaporating surface, making it possible to derive a reliable value of u* by using 
the smooth-wall logarithmic profile. Pasquill presented his result for bromobenzene 
(Sc = 2.16) as a table of smoothed values of the ratio of observed and predicted 
evaporation rates. We have converted these values to the dimensionless form required 
by (2.2). Pasquill used three different shapes of filter paper, but did not tabulate 
separate data for each. Our back calculation therefore leads to alternative results as 

FIQTJRE 2. (a) Variation of mean mass-transfer coefficient ji with non-dimensional pool length dlz ,  
(smooth surface). (b)  Part of (a) enlarged to show comparison with data: A, Elias (1929, 1930), 
Pr = 0.71 (from Pasquill 1943); 0, Gray (1974), Sc = 2.2; 0,  Hinchley & Himus (1924), Sc = 0.60 
(from Paaquill 1943); 0, Hine (1924), Sc = 1.85 (from Pasquill 1943); V, Mackay et d. (1980), 
Sc = 2.7; ., Millar (1937), Sc = 0.00 (from Pasquill 1943); +, O’Brien & Stutzman (1960), 
Sc = 0.01;0, ibid., Sc = 1.08; +,ibid., Sc = 1.84; ---, Pasquill (1943), Sc = 2.10, circles & large 
squares; * * .  * ,  ibid., rectangles; X - X ,  Reijnhart et d. (1980), theoretical, Sc = 1.0, 1.4, 1.7; 0 ,  
Reijnhart & Rose (1980), Sc = 1.7; A, Wade (1942), Sc = 1.79 (from Pasquill 1943). 
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seen in figure 2 ( b ) .  Pasquill does show individual data points in his figure 4, where 
there is a slight systematic variation with the size of paper. To make our comparison, 
we have taken d as the downwind length for squares and rectangles and as the square 
root of the area for circles: this procedure was adopted in processing all the 
experimental data discussed below. Pasquill’s data agrees well with our predictions 
at the very similar Schmidt number of 2. 

For the other experiments reviewed by Pasquill, the velocity measurements were 
either bulk averages or values from rather large instruments not particularly near 
the liquid surface. There were no specific attempts to  create an  equilibrium 
logarithmic boundary-layer profile over the evaporating surface; often there was little 
distance for full development of a channel-flow velocity profile. It is therefore 
impossible to  deduce values of u* a t  all precisely: all we have been able to do is to 
estimate it from the relation between u* and the bulk velocity for pipe flaw as given 
by Tennekes & Lumley (1972, equation (52.36))’ obtaining an effective pipe radius 
by equating the areas to  those of the rectangular or square cross-section used; or, 
in cases where velocities are given as point values (Hine 1924; Millar 1937), to use 
these in the logarithmic profile. 

Using Pasquill’s (1943) table 7 comparing these data with his theory, we have 
obtained the results inserted in figure 2 ( b ) .  Like Pasquill, we find that the results of 
Hine (1924) and Hinchley & Himus (1924) are up to twice those predicted. Millar’s 
(1937) results for water (Sc = 0.6) are slightly higher than our predictions for Sc = 0.5. 
Wade’s (1942) results are about 50 % higher than we predict. In  all cases the variation 
of d/z,  is in reasonable agreement with the predicted trends. 

The shortcomings criticized above in the experiments other than Pasquill’s apply 
also to more recent work of O’Brien & Stutzman (1950) and Gray (1974)’ which have 
been included in Figure 2(b) after making the same assumptions regarding u* as 
above. O’Brien & Stutzman’s results for water are close to our curve for Sc = 0.5, 
but for organics of higher molecular weight they obtain mass-transfer rates about 
50% higher than predicted. Gray’s results for m-xylene (Sc = 2.2) are high for 
d/z, < 4000 but are close to ours for Sc = 2 at higher values. Gray’s experiments show 
a much more marked variation with d/z, than any others. 

Pasquill (1943) also considered that a useful comparison could be made with data 
of Elias (1929, 1930) for heat transfer from a heated copper plate mounted in an 
insulating wooden platform - though the leading edge of the plate was near that of 
the platform, invalidating the assumption of a developed boundary layer. The value 
of the heat-transfer coefficient extracted from Elias’s data by Pasquill is shown in 
figure 2 (a)  and falls close to the value we predict using Sc = 0.7 1 ,  the value of the 
Prandtl number. 

Also included in figure 2 are the wind-tunnel data on toluene of Reijnhart & Rose 
(1980), who were careful to develop a logarithmic boundary-layer profile and 
determine values of u*. These data fall about where expected from our theory, and 
also match the numerical solutions of Reijnhart et al. (1980) mentioned above. They 
did not in fact use Kader’s (1981) result (2.27b) as the wall boundary condition, but 
incorporated molecular diffusivity using a simpler analysis which happens to  give 
similar values for Sc between 1 and 2. The results of Reijnhart et al. for Sc = 1,  1.4 
and 1.7 are shown in figure 2(b), and appear to  have a smaller slope than ours, but 
this may be due to our extraction of their results from a small-scale graph. 

Reijnhart & Rose also conducted experiments with roughness elements upwind 
from the pool - these are discussed in 54.3. 

The remaining experimental point on figure 2 (b )  is provided by Mackay, Paterson 
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FIGURE 3. Dependence of mean mass-transfer coefficient? on Schmidt number Sc (smooth surface) : 
., O’Brien BE Stutzman (1950), d/z, x 950; 0, ibid., d/z, ~ 5 0 0 0 ;  0 ,  Pasquill (1943), 
d / z , x  2 x lo4; +, Reijnhart et al. (1980), theoretical, d/z, x 2 x lo4; +, Wade (1942), d/z, x 5000 
(from Pasquill 1943). 

& Nadeau’s (1980) wind-tunnel measurement on cumene, for which the air velocity 
was recorded 30 mm above the liquid surface. The value of j is rather greater than 
we would predict for Sc = 2.7. 

A potentially useful set of heat-transfer experiments was conducted by Browne & 
Antonia (1979), but unfortunately they do not give values of the friction velocity in 
their developing boundary layer. Snijders, Koppius & Nieuwvelt (1983) carried out 
a similar experiment with a tripped layer on a smooth plate with a section at  a 
uniform raised temperature starting at 1.06 m behind the leading edge. They present 
detailed profiles and surface-flux measurements at a distance 0.443 m from the start 
of the heated section. The boundary-layer thickness was 35 mm. From their table 1 ,  
the value of d / z ,  was 9.73 x lo4, giving n = 0.173. The local heat-transfer coefficient 
had a value of 5.87 x This compares with our theoretical value based on ( 3 . 2 ~ )  
of 6.30 x lop2. The average heat-transfer rate is not reported, and so does not appear 
in figure 2(b ) .  

4.2. Variation with Schmidt number 
Pasquill (1943) presented further data of his own and from Wade (1942) in order to 
examine the dependence on Schmidt number. These are listed in his table 4 in the 
form of evaporation rates relative to water, and we have used them in a comparison 
with our results in figure 3 by assuming them to apply near the midrange values of 
d/z, shown in figure 2(b) .  Results of O’Brien & Stutzman (1950) have been included 
in a similar way. On the whole, all three experiments indicate a slower variation with 
Sc than we predict - again the calculations of Reijnhart et al. (1980) give results 
similar to ours. Taking each experiment separately, this might have been ascribed 
to some inadequacy, but the finding in three different cases seems significant : what- 
ever the doubts about the absolute values measured, these experiments should be 
reasonably reliable for the relative evaporation rate of different substances. 
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FIGURE 4. Variation of mean mass-transfer coefficient j with 
non-dimensional pool length dlz ,  (rough surface). 

Unfortunately the values of Sc for other experimental liquids used span too small a 
range to shed much further light on the issue. 

4.3. Rough surfaces 

In most situations of practical interest i t  is likely that the liquid surface will be 
distorted by the presence of waves, and that i t  will be aerodynamically rough. For 
spills of liquid floating on the sea the roughness length will be related to that of the 
surrounding sea; for confined bodies of liquid the roughness will depend on the fetch 
available for the wind generation of waves, for which we know of no simple law. If 
evaporation occurs from a rough or porous land surface, then the roughness length 
may be characteristic of that  surface, but the effective vapour pressure may be below 
the saturation value. 

Figure 4 shows our calculated values for the mean mass-transfer coefficient j for 
evaporation from rough surfaces as a function of the dimensionless pool length d/z,. 
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Because of (2.28b) the two parameters Re and Sc of (2.2) occur in the combination 
Ret Sc. Since Re, must be greater than 2 for aerodynamically rough conditions, the 
minimum value of Re! Sc is about 1 for substances of practical interest. 

The quality of data for testing these results is considerably lower than for small-scale 
smooth surfaces. Brutsaert (1982, $7.1) compared his version of Sutton’s (1934) 
theory with an empirical mass-transfer formula due to Harbeck for reservoirs with 
areas between 4 x lop3 and 120 km2: 

J = 0.103d-’.l. 

This resulted from extensive measurements of means over a week or longer. Brutsaert 
recommended a value z, = 2.28 x m as a typical value for sea and lake surfaces 
deduced from measurements of the drag coefficient. The variation with windspeed 
was practically negligible except in high winds. With this value of z, we have inserted 
(4.1) on figure 4. If we assume a typical wind speed of 5 m/s at height 10 m then we 
find Re, = 2.8 for these conditions, giving Reb Sc = 1 .O. Our calculated mass-transfer 
coefficients are then satisfactorily close to (4.1), particularly in view of the scatter 
of Harbeck’s results (Brutsaert 1982, figure 7.4), and of the fact that the profile of 
water-vapour concentration creates an unstable density gradient (see 5 6). We have 
also ignored in this comparison the existence of a roughness change at the shore. 

Brutsaert gives a similar correlation for evaporation of water from shallow square 
pans between 0.1 and 6 m2 in area, 

J = 0.129d-0.’32, (4.2) 

and we have plotted this in figure 4, again assuming z, = 2.28 x m, in the absence 
of actual experimental determinations. Again our predicted values are rather lower. 
Here, however, the effects of the roughness change and of the edges of pans are likely 
to be rather serious. 

Results for evaporation of other liquids from pans of a similar size in the open air 
are given by Jones & McGugan (1978) and Jeulink (1983). Jones & McGugan were 
mainly concerned with comparison of results with evaporation of solvents from 
domestic waste, Jeulink with a study of the effectiveness of various fire-fighting foams 
in reducing evaporation. Hence detailed measurements for determining u* and z, are 
again lacking. If one uses z, = 2.28 x m again to calculate u* from the 10 m 
windspeed, one obtains the scattered values listed in table 1. On the whole these values 
are much lower than those indicated by the theory for appropriate values of Re’g Sc. 
The large values at  low wind speeds might be due to natural convection (but see $6). 
Jeulink’s results for ‘iso-octane’ have been omitted, since the precise isomer is not 
specified, creating an uncertainty in P, of almost a factor of 3. (Here and elsewhere 
where vapour pressures were not evaluated by the original authors, we have used the 
Antoine equation with coefficients from Appendix A of Reid, Prausnitz & Sherwood 
(1977). In  their chapter 11 they discuss means of estimating diffusion coefficients.) 

There are several other ways in which one might process the results in table 1 : one 
could assume a smooth surface, but more significant is the fact that the windflow 
in these experiments is far from the ideal configuration of a horizontally homogeneous 
boundary layer, since the upwind roughness lengths will be those characteristic of 
the terrain. Jeulink’s experiments were conducted amongst ‘ sandhills ’ partly 
overgrown by small trees. It is possible to estimate u* over the liquid surface from 
the simple relations of Hunt & Simpson (1982, $7.3.1). This implies that values of 
u* may be 5 of those used in table 1 ,  and this would account for the low values listed. 
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Authors Substance 
Mean 10 m - 
windspeed 3 

Jones & McGugan (1978), isopropanol 0.5 0.2335 

perchloroethylene 10 0.0241 
alz, = 4.39 x 1 0 3  acetone 6.7 0.0164 

Jeulink (1983), 
d / z ,  = 1.94 x lo4 

n-hexane 
n-hexane 
benzene 
toluene 
toluene 
benzene 
n- hexane 
n-hexrtne 
toluene 
benzene 

0.8 
0.8 
0.8 
1.5 
1.5 
1.5 
3 
3 
3 
4.5 

0.0650 
0.0522 
0.0626 
0.0460 
0.0498 
0.0299 
0.0365 
0.0332 
0.0209 
0.0422 

TABLE 1.  Summary of evaporation-pan experiments, assuming 
logarithmic velocity profile, z, = 2.28 x m 

We conclude that, in most of these experiments, there is insufficient detail to do 
more than confirm the order of magnitude of our predicted values. 

Some rather more careful experiments involving roughness effects were conducted 
by Reijnhart & Rose (1980) in which a rough surface was placed upwind of an 
evaporation pan in a wind tunnel. Unfortunately, velocity profiles were measured 
only upwind, not over the pool itself. They achieved a good match with numerical 
solutions of the Reijnhart et al. (1980) model by accounting for the roughness change 
by the ad hoc procedure of using a new equilibrium smooth-wall velocity profile whose 
average velocity over the boundary-layer depth was equal to the average velocity 
upwind. In this case this gives a similar result for the change in friction velocity to 
that of Hunt & Simpson (1982). Thus these experiments do not in fact yield any data 
relevant to rough-wall evaporation. 

Finally, figure 4 includes numerical results from Reijnhart & Rose (1980) using the 
Reijnhart e l  al. model for rough walls. This case was treated by taking the eddy 
diffusivity as KU*(Z + zo) ,  avoiding occurrence of a singularity at the wall, with no 
allowance for molecular diffusion. This is similar to our solution with /3 = 0, which 
according to (2.28b) would occur for Rei Sc = 0.339, and this is in accord with figure 
4. Reijnhart & Rose found that use of this solution for evaporation with the upwind 
roughness gave completely erroneous results, implying that evaporation would 
increase as z,, increased at fixed u*, instead of decreasing as found experimentally and 
predicted by including the roughness change. 

5. Effect of high vapour pressure 
The theory of 912 and 3 has been developed on the assumption that the vapour 

behaves as a passive contaminant. There are two important factors limiting the 
validity of this assumption. One is the perturbation of the boundary-layer flow by 
a sufficiently large vertical velocity at  the surface, even if the evaporating liquid has 
the same molecular weight and temperature as the air. The other is the possibility 
of buoyancy effects inducing changes in turbulence structure or driving convective 
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mean flows. The buoyancy effect will be discussed in $6; an analysis of the effects 
of high vapour pressure follows here. 

The effective vertical velocity of injection of fluid is 

w, = J / P s  (5.1) 

where the mixture density a t  the surface, using the ideal-gas law, is 

where MA is the effective molecular weight of air and P, the atmospheric pressure. 
Tennekes & Lumley (1972, $2.5) discuss the effect of mass transfer on a turbulent 
boundary layer, and their figure 2.9 suggests that the flow will be little affected if 

w,/u* ;5 0.01. (5.3) 

This condition becomes jc,/ps 5 0.01, (5.4) 

and, since j is of the order 0.014.1,  it will be violated as PJP, approaches unity, 
i.e. as the boiling point is approached. 

A full analysis of this complex nonlinear interaction is beyond the scope of the 
solution methods of this paper, but the theory can be extended for practical use by 
a method standard in chemical-engineering analysis of such situations, known as ‘film 
theory’ (see e.g. Sherwood, Pigford & Wilke 1975). This is based on solving the 
following equations for combined vertical advection and diffusion : 

J = PW = P ~ W - P D - ,  dw 
dz (5.5) 

where p(z), w(z)  are mixture density and vertical velocity, and w ( z )  the vapour mass 
fraction. The mass flux J is independent of z ,  since advection in the 2-direction is 
ignored. Integration of (5.5) leads to the result that the mass-transfer coefficient is 
given by 

(5.6) 

where j is the value calculated using diffusion alone. 
The result can be applied to a turbulent boundary layer if it  is assumed that the 

major resistance to mass transfer occurs in the near-wall region where horizontal 
advection is unimportant and that the eddy diffusivity replacing D in (5.5) remains 
unaltered from its value in the unperturbed boundary layer. Although these 
assumptions appear rather rash, the result is very effective in predicting the variation 
of mass-transfer rate with Pv/P, observed by Reijnhart & Rose (1980) for toluene (see 
our figure 5). Experimental support for (5.6) in turbulent channel flows has been 
provided by Sherwood et al. (1975, pp. 175-178). In fact, O’Brien & Stutzman (1950) 
used the correction factor in (5.6) in processing their results reproduced in our figure 
2 (b) : in their experiments Pv/P, was about 0.16 for benzene and 0.29 for acetone, but 
less than 0.1 for the other substances studied. 

Reijnhart et al. (1980) treated high vapour pressures in their numerical model in 
a similar fashion by eliminating w from (5.5) to  obtain 



340 P. W .  M .  Brighton 

1 . 2 ,  I I I I I I I , ,  I ,  I , ,  , , , 

1.1 t + A  

O . t  + 
20 30 40 50 60 70 80 90 100 

Temperature ("C) 

FIGURE 5. Comparison of data of Reijnhart & Rose (1980) for dependence of evaporation rate of 
toluene on temperature with variation predicted by film theory (5.6). The passive contaminant 
evaporation rate is taken as 0.65 (arbitrary units). +, data from figure 4 of Reijnhart & Rose. 

again neglecting the effects of horizontal advection. They then used a diffusivity 
enhanced by the factor (1  -w)-l in their numerical scheme. They introduced a further 
approximation to  remove the nonlinearity by evaluating the diffusivity by linear 
interpolation between its enhanced value at the boundary and the original value a t  
the top of the viscous sublayer. 

Note that (5.6) tends to infinity as the boiling point is approached. This is 
physically reasonable, since in a boiling pool the vaporization rate is controlled by 
the rate at which heat enters the pool, not by the rate a t  which vapour is removed 
by the wind. In  fact the mean pool temperature can never quite reach the boiling 
point, as temperature gradients must exist to cause heat transfer at the nucleation 
sites. 

6. Estimates of buoyancy effects 

temperature is 
The density difference ratio between the saturated vapour and the air a t  the same 

where ps is given by (5.2) and pA = P, MAIRT. A dense vapour layer of thickness z1 
will tend to spread with a speed of order (gd'z,): ,  as observed in experiments on 
heavy-gas dispersion (see e.g. Brighton, Prince & Webber 1985), and so for this mean 
convective motion to  be negligible we require the Richardson number 

Ri = gA'z , /U;  (6.2) 
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to be much less than unity. Using (3.7) and (6.1)) this condition becomes 

Secondly, we can also gauge the dynamic effects of the density change due to the 
vapour by evaluating the Monin-Obukhov lengthscale corresponding to a mass flux 
J of vapour from the surface. Monin & Yaglom (1971, $7.1) explain how this 
parameter measures the gravitational influence of a temperature gradient on the 
structure of a turbulent boundary layer. To apply their analysis to the effect of 
vapour, we note that the contribution of density fluctuations to the buoyancy forces 
in the turbulent kinetic-energy balance is, to adapt Monin & Yaglom’s equations (7.1) 

(6.4) 
and (7.2)) 

and the vertical flux of the scalar quantity x is given by 
B = -a = -gAfp om, 

(cf. (2.25)). The Monin-Obukhov lengthscale is defined by 

L = p o u 3 , / ~ B  (6.6) 

(Monin & Yaglom 1971, equations (7.2) and (7.12)). The meaning of this lengthscale 
is that stratification influences the boundary-layer structure significantly only a t  
heights z of order I L I. In our case, we require I zl/L I 4 1 to ensure that the vapour 
acts as a passive contaminant. In  fact this requirement probably need not be 
interpreted too stringently if we base L on the surface mass flux, since the flux will 
decrease with height in our developing internal boundary layer. From (2.12), (6.2)) 
(6.4) and (6.5) we have 

(6.7) 
‘ = 3 R i  2 

L n2K ’ 

and the factor multiplying Ri is of order unity in the range of practical interest, so 
that this criterion is equivalent to (6.3). 

In  the wind-tunnel experiments discussed in $4.1 the largest values of zl/L 
(generally slightly greater than Ri) were all considerably less than 1 :0.08 (Gray 1974), 
0.06 (O’Brien & Strutzman 1950), and less than 0.02 for the others. Thus it appears 
that buoyancy can be ruled out as a major factor contributing to the inconsistencies 
seen in figure 2 (b). 

In  $4.3 we noted that there were greater discrepancies in the results for evaporation 
from open-air pans (see table 1). Evaluating zl/L for Jones & McGugan’s (1978) 
isopropanol test gives only 0.04, but in Jeulink’s (1983) n-hexane tests with 
U ,  = 0.8 m/s this parameter reaches about 0.25. Of the factors in (6.3), it is in fact 
variations in P,/P, that give the greatest differences between experiments. Taking 
the correlation for lakes given in figure 4 with d = 228 m, U ,  = 5 m/s and temperature 
10 “C gives zl /L as only 0.024. 

7. Conclusions 
In  this paper we have presented a new analytical method of calculating the mean 

evaporation rate, or mass-transfer coefficient, from a plane liquid surface into a 
turbulent boundary layer. The theory is based on a combination of recent analysis 
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of diffusion from a line source with relations for the near-wall equilibrium profiles 
of vapour concentration. The solution involves no new empirical constants, and 
should be valid for a large range of pool sizes for both smooth and rough surfaces. 
Over this large range a simple power-law dependence on pool size is not valid. 

There are great inconsistencies between experimental results for, nominally similar 
parameter ranges, so i t  is not possible to assess the accuracy of our results, but it 
does appear that  the more careful experiments give a good match. The most serious 
limit on the validity of the theory for passive vapours is the requirement n < 1.  For 
some of the experimental data in figure 2 (b), d/z, is around lo3, with n greater than 
5. I n  the region where the theory matches the more reliable data, d/z, x lo4 and n rz $, 
so this condition does not seem too limiting in practice. 

Since the data are so scattered, particularly for larger-scale, outdoor experiments, 
i t  would be desirable for new carefully controlled experiments to  be carried out. These 
are needed to investigate the doubts about the dependence on Schmidt number 
discussed in $4.2 and to study the effects of roughness change, high vapour pressure 
and of buoyancy, which are liable to become important for actual accidental spills 
of hazardous substances. We have suggested simple practical ways of extending the 
theory to  cover the first two factors, but to include buoyancy will require application 
of results from current research on heavy-gas dispersion. 

This work was done for the UK Health and Safety Executive. However, all views 
and opinions expressed are those of the author alone; they do not necessarily reflect 
either the views or the policy of the Health and Safety Executive. 

Appendix A. Inversion of the Laplace transform of the mass flux 

the standard Bromwich contour integral : 
The Laplace transform (3.1 a) is to be inverted to yield j(X) with 2, = p-' using 

(A 1) 

where C is a contour parallel to the imaginary axis and passing to the right of the 
singularities of;@) (Carslaw & Jaeger 1963, chap. IV).  The integrand has a branch 
point a t  p = 0 and a simple pole a t  p, = e". To cast (A 1) in a more manageable form, 
i t  is desirable to deform C into a contour C' wrapped around a branch cut along the 
negative real axis as shown in figure 6. However, the pole apparently gives a 
contribution to j(X) that  grows exponentially, whereas one expects this evaporation 
problem to have a decreasing solution forj. In  fact this contribution may be ignored 
because it represents the effect of an  eigensolution for the diffusion equation with 
values of x prescribed on the boundary: the expression 

satisfies (2.20) and condition (2.29a) with xo = 0 along the whole x-axis. The 
appearance of this unwanted solution is a consequence of letting the logarithmic 
profile exist arbitrarily close to the surface, whereas in fact it merges into the diffusive 
sublayer: it can be ruled out because i t  violates the physical condition (xo-x)/j > 0. 
Returning to  figure 6 and making the contour deformation C+ C' now yields the result 
(3.2). 
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FIQURE 6. Deformation of the contour used in Appendix A. 0 is the origin in the p-plane. 

Appendix B. Evaluation of integrals (3.2b) and (3.56) 
Integrating (3.2b) by parts and substituting s = p t ,  we obtain 

In 6- Ins 
 IT-^ tan-l[ ] e-8 ds. 

A formal expansion of this integral can be obtained by expanding the inverse tangent 
as a Taylor series in Ins to give 

where 

These integrals can be evaluated by observing that 

= low e+' esln8 de = r(l +z) 
f - 0  3 .  

= 1 -~~+! j (y '  +ina) x2 - f ( y 3  + +nay + 2&'(3)) x3 + . . . . (B 3) 

Here we have used Abramowitz & Stegun's (1972) formulae (6.4.1), (6.4.2), (3.6.23) 
and (23.2.24), t being the Riemann zeta function. Hence go = 1, g1 = -0.5772, 
gg = 1.978 and g3 = -5.445. 

Integration by parts of the terms of (B 2a) leads to a similar series for 8: 

where 

1 
g o  = 1, 

al = 1 -y = 0.4228, 

ga = 1 + ( 1 - ~ ) ~ + i ~ '  = 2.824, 

g3 = ( 1 - ~ ) ~ + ( 3 + $ ~ )  (1-~) -2&'(3)  = 1.025. 
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The convergence properties of the series (B 2) and (B 4) are not obvious, but they 
do provide a valid asymptotic expansion for large 6. Moreover Q([) has been computed 
numerically over the range I In [ I < 50 and found to agree with the sum of terms in 
(B 4a)  t o  within about +%, Hence these series are the most convenient way for 
obtaining numerical values, and have been so used to calculate the results of $4. 

I am very grateful to Dr D. M. Webber for supplying all the results in this 
Appendix. 
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